A class of fourth-order hyperbolic equations with strongly damped and nonlinear logarithmic terms

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we study a class of hyperbolic equations the fourth order with strong damping and logarithmic source terms. Firstly, prove local existence weak solution by using contraction mapping principle. Secondly, in potential well framework, global solutions energy decay estimate are obtained. Finally, give blow up result at finite time under subcritical initial energy.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behaviour of strongly damped nonlinear hyperbolic equations

© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...

متن کامل

Global Existence of Strong Solutions to a Class of Fully Nonlinear Wave Equations with Strongly Damped Terms

We consider the global existence of strong solution u, corresponding to a class of fully nonlinear wave equations with strongly damped terms utt −kΔut f x,Δu g x, u,Du,D2u in a bounded and smooth domain Ω in R, where f x,Δu is a given monotone in Δu nonlinearity satisfying some dissipativity and growth restrictions and g x, u,Du,D2u is in a sense subordinated to f x,Δu . By using spatial sequen...

متن کامل

On a Class of Fourth-order Nonlinear Difference Equations

We consider a class of fourth-order nonlinear difference equations. The classification of nonoscillatory solutions is given. Next, we divide the set of solutions of these equations into two types: F+and F−-solutions. Relations between these types of solutions and their nonoscillatory behavior are obtained. Necessary and sufficient conditions are obtained for the difference equation to admit the...

متن کامل

Asymptotic behavior of solutions to a class of fourth-order nonlinear evolution equations with dispersive and dissipative terms

We study the long time asymptotic behavior of solutions to a class of fourth-order nonlinear evolution equations with dispersive and dissipative terms. By using the integral estimation method combined with the Gronwall inequality, we point out that the global strong solutions of the problems decay to zero exponentially with the passage of time to infinity. The proof is rigorous and only based o...

متن کامل

Strongly hyperbolic second order Einstein’s evolution equations

BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic research archive

سال: 2021

ISSN: ['2688-1594']

DOI: https://doi.org/10.3934/era.2021066